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INTRODUCTION 
 

 
Figure 1: Illumination of vertical wavenumbers Kz under 

different opening angles for FWI (Alkhalifah and Kazei, 

2018). Here θ is the angle between incident and reflected 

rays, v is the background velocity, θmax is the maximum 

opening angle defined by aperture and the target 

perturbation depth, ωmin and ωmax are the minimum and 

maximum angular frequencies used in the FWI. On this 

diagram for each Kz the blue area covers the opening angles, 

under which Kz is illuminated. Hereinafter in all figures and 

equations, we will use notation θ for reflection angle, which 

is an angle between incident angle and vertical instead of 

opening angle. 

 
Claerbout (1985) showed, that seismic reflection data are not 

sensitive to middle vertical wavenumbers in the model 

spectrum. Devaney (1984) estimated the missing part of the 

spectrum for the velocity models, used in diffraction 

tomography; Mora (1989) expanded this technique to 

wavenumber coverage of FWI. In (Alkhalifah and Kazei, 2018) 

illumination of vertical wavenumbers Kz under different 

opening angles for FWI was calculated (see Fig. 1) and is useful 

for this paper, as we consider recovery of vertical middle 

wavenumbers in this paper. 

 

Seismic FWI attempts to match synthetic and observed 

waveform data through iterative refining of the subsurface 

velocity model (Virieux and Operto (2009)). Despite significant 

efforts and progress made over the past decades in FWI 

methodology (e.g. Pratt et al., 1996; Warner et al., 2013; van 

Leeuwen and Herrmann, 2013; Alkhalifah, 2016; Kazei et al., 

2016; Gray, 2016; Alkhalifah et al., 2018; Kazei and 

Alkhalifah, 2018; Ovcharenko et al., 2018a; Kalita et al., 2018; 

Yao et al., 2019; Guo and Alkhalifah, 2017), the non-linear 

iterative optimization procedure is still prone to stagnation in 

local minima when initiated from a poor assumption and applied 

to a geologically complex region. Thus, building a plausible 

initial model becomes an important task and extrapolation of 

missing middle wavenumbers in the model could significantly 

improve the convergence. For extrapolation of middle 

wavenumbers different tools can be used, but we intend to 

discuss deep learning capabilities for that. 

 

A number of deep-learning driven approaches proposed to 

reconstruct the missing seismic data frequency is growing lately. 

This includes two-dimensional shot-by-shot (Ovcharenko et al., 

2018b; Jin et al., 2018) and one-dimensional trace-by-trace 

(Sun and Demanet, 2018) data bandwidth extension. With 

respect to accuracy one-dimensional approaches seem less 

effective, than two-dimensional, because of an accumulation of 

predicted errors reduces the coherence of data across traces. 

However, trace-by-trace techniques seem more stable and easier 

to tune, as fewer parameters are involved in a neural network 

training process than for the two-dimensional problem. In this 

paper, we discuss only one-dimensional approach, although we 

plan to develop two-dimensional one for the meeting. 

 

SUMMARY 
 

Conventional seismic data are naturally mainly sensitive 

to the very smooth velocity variations that alter 

transmission traveltimes (low-model wavenumbers) and 

very abrupt discontinuities that cause reflections (high-

model wavenumbers). Full-waveform inversion (FWI) of 

seismic data inherits this lack of middle model 

wavenumber illumination, which results into ringy 

artifacts in the gradients. Multiple methods have been 

suggested to overcome this issue. Here we tackle the 

problem of missing wavenumbers with a deep-learning 

approach. Namely, we filter out the wavenumbers that are 

expected to be missing from the acquisition design and 

then train a deep convolutional neural network to provide 

the missing wavenumbers trace-by-trace. We test several 

network configurations and several training sets derived 

from the Marmousi II model. The neural network shows 

limited capabilities in generalizing from the input data 

sets. We also report a tradeoff between the generalization 

abilities and accuracy on the training data set. 

Key words: machine learning, signal processing, velocity 

analysis, full-waveform inversion. 
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THEORY 

 

We consider this technique to be applied in the FWI workflow, 

namely improving the inverted velocity model. So to test our 

technique we suggest to generate synthetic velocity 

perturbations, which could be acquired in real FWI applications. 

Perturbations can be simulated by subtracting the background 

velocity model from the true model, having the full broadband 

of wavenumbers, e.g. Marmousi. As the background model can 

be some modification of the true model: for example its linear 

trend, moving average etc. In the examples below we calculate 

background models, taking a linear trend of the true one (see 

Fig. 3 (a)). 

After that, according to diagram on Fig. 1, we construct a high-

pass filter, that deletes low and middle wavenumbers from the 

data trace-by-trace. Namely, we delete vertical wavenumbers 

smaller than 

𝐾𝑧 <
2𝑓𝑚𝑖𝑛cos⁡(𝜃𝑚𝑎𝑥(𝑧))

𝑣(𝑧)
   (1) 

from each log of the perturbation model. 

 

 
 
Figure 2: Acquiring of maximum reflection angles in 

equation 2 for maximum offset equal to 4 km using ray 

tracing. 

 

The chosen cut-off value of the filter corresponds to the lower 

boundary of high wavenumbers (reflection part of the data). We 

don’t consider low wavenumbers corresponding to the 

transmission part of the data in our filter, since it is not easy to 

formulate an analytic expression for them, as for the high 

wavenumbers. Thus we intend to extrapolate middle and low 

wavenumbers from high wavenumbers with the proposed deep-

learning approach. We can formulate the filter in this form: 

 

𝐾𝑧 ∈ [
2𝑓𝑚𝑖𝑛 cos(𝜃𝑚𝑎𝑥(𝑧))

𝑣(𝑧)
, 𝐹𝑚𝑎𝑥], (2) 

 

where Kz is the vertical wavenumber, θmax is the maximum 

reflection angle defined by the aperture and target perturbation 

depth, Fmax is the maximum frequency available in the data, v is 

the background velocity. 

 

For each depth of the log we calculate the maximum reflection 

angle θmax, as the angle under which the ray arrives at a certain 

depth from the maximum offset point, noted on Fig. 2 with a 

black dot. As the white dot on the Fig. 2 we mark the log for 

which we perform ray tracing. In our approach, presented in 

Fig. 2, we trace rays in the smoothed with 2-dimensional 

Gaussian filter Marmousi. We assume that we can conduct ray 

tracing only for one log from smoothed Marmousi and use the 

acquired θmax for all logs in our data set, because angles from 

ray tracing will not differ very much along profile in laterally 

homogeneous strongly smoothed Marmousi. 

 

This is a vertical wavenumbers Kz filter, which we apply to the 

depth-frequency transform of each velocity log. In this paper 

we chose to use the so-called wavelet synchrosqueezed 

transform (WSST). This time-frequency (TF) decomposition is 

used to characterize the non-stationary relation between the 

depth and instantaneous frequency, which can be very useful in 

the processing and interpretation of seismic data. 

 

The application of the filter on a single Marmousi perturbation 

log, taken from the testing data set from Fig. 4, is shown on Fig. 

3 on the (b) as the half-transparent gray mask, overlaid on the 

WSST spectrum. We apply the mask, constructed with equation 

2 to the WSST spectrum of log and cut the part of the spectrum, 

lying outside the mask. Then we calculate the inverse WSST 

transform of the filtered with mask spectrum and acquire 

filtered perturbation (see (c) in Fig. 3). 

 

 

Figure 3: a) True, background and perturbation logs; b) 

WSST spectrum of perturbation log with an overlaid filter 

mask; c) Filtered, perturbation and predicted perturbation 

logs; d) WSST spectrum of predicted perturbation log. fmin 

= 10 Hz. 

 

We can notice (on (c) in Fig. 3) , that the low-frequency part of 

the data have been filtered from the log. Also, we can notice that 

low frequencies deleted with filter are recovered on the 

predicted perturbation log (see Fig. 3). On (c), we can see that 
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CNN predicts some features of perturbation log, but with the 

wrong amplitude. 

 

The idea of our approach is to train 1D convolutional neural 

network (CNN) to extrapolate low and middle wavenumbers 

from filtered perturbation logs. 

 
CNN FRAMEWORK 

 
Convolutional neural networks are mathematical models which 

are designed to mimic the workflow of visual data processing 

in the human brain. At the training stage a supervised CNN 

derives dependencies in the data set given pairs of input and 

target data. The trained network then might be used to infer 

predictions from the previously unknown data. In data-driven 

approaches the data are of higher importance, than a method 

that it is approached. Thus, proper composition and 

preprocessing of training data set should be addressed in the 

first place. 

 

Data 

 

Our motivation is to produce a depth log with full wavenumber 

coverage given an equivalent log with missing middle and low 

wavenumbers. Thus, input and target data for the network are 

depth logs taken at the same spatial location however with 

different wavenumber content. Namely, the target data for CNN 

are the filtered perturbation logs shown in Fig. 4 in (b). The input 

data are equivalent logs, however with filtered out middle 

wavenumbers; the output data are shown on (c) in Fig. 4. Both 

input, target and output (predicted) vectors are 300 elements 

long. 

 

We generate the data set of 13601 logs from the original 

Marmousi II (Bourgeois et al., 1991) and BP 2004 (Billette and 

Brandsberg-Dahl, 2005) benchmark models and split it into 

training, validation and testing parts as 80/10/10. Full 

dimensions of inputs and target data sets are 13601×300. To 

ensure even contribution of features from the data set scale 

values in each column to fit the [-1, 1] interval. 

 

Network Architecture 

 

We design a generic CNN which takes a vector of 300 elements 

as input and produces a vector of the same size as an output. 

The architecture of the CNN consist of a sequence of 5 

convolutional layers each followed by a max pooling layer. 

Convolutional layers derive spatial patterns in the data by 

convolving the input volume with a set of filters. There are 4, 8, 

16 and 4 filters in the convolutional layers, respectively. 

Elements of these filters are trainable parameters which will 

learn patterns in the data during the iterative optimization at the 

training stage. Max pooling layers reduce spatial 

dimensionality of the data by drawing a single maximum value 

from the nearest neighborhood. We add a fully-connected layer 

of 100 neurons at the end of the network to interconnect feature 

representations from higher convolutional levels. We use 

rectified linear units as activation functions in all convolutional 

layers and a hyperbolic tangent in the dense layer. At the last 

stage, we upsample the 100 element output from the dense layer 

by doing another convolution with 3 filters and then reshape the 

resulting volume to produce the target log of 300 elements. 

 

The proposed network is numerically implemented in Python, 

using Keras library (Chollet et al., 2015) with Tensorflow 

Abadi et al. (2016) backend. 

 

EXAMPLES 

 

We test our approach by inference the logs with full 

wavenumber content from equivalent logs with missing 

wavenumbers. 

 

We want to present the example of application the CNN to the 

Marmousi velocity data set (see Fig. 4). Fig. 4 consists of 3 

panels: a) filtered velocity perturbations; b) velocity 

perturbations obtained by the subtracting of the background 

model from original Marmousi; c) data, predicted by CNN from 

input data. Predicted data should be similar to the true one. You 

can notice, that CNN predicts quite well the part of the data, 

where it was trained, and the testing data set as well, because it 

manages to spread existing trend in the training data set layers 

to the right edge of the model. We have made another 

experiment, there the testing data set is larger than on 4 and is 

extended to the left (see Fig. 5). We can observe, that CNN still 

shows promising results. 

 

DISCUSSION & CONCLUSIONS 
 

Neural network manages to map filtered perturbations to the 

real perturbations quite well for the samples that were used 

directly in training. There is some minor degradation on the 

validation data set, as it is quite similar to some samples in the 

training set. The training data set is rather small and simple and 

overfitting is obvious even with a rather simple neural network 

architecture and few parameters. Reducing the number of 

parameters in the network helps increase the generalization 

abilities of the network at the expense of overall (training and 

testing) prediction degradation. 

The one-dimensional trace-by-trace technique demonstrated 

potential in the recovery of the missing middle and low 

wavenumbers. The continuity of the non-horizontal structures 

is not taken into account though. We mainly attribute it to the 

use of limited training data set and 1D convolutional network. 

These to some extent contradicts the successful application of 

1D extrapolation to seismic data reported by Sun and Demanet 

(2018). Therefore, as the next step we consider in the 

development of two-dimensional approach for middle 

wavenumbers extrapolation. 
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Figure 4: a) Input, filtered perturbation data, b) Target, perturbation data, c) Output, predicted data. Number of logs in 

validation, training and testing datasets is 1000, 11240 and 1362 logs, correspondingly. 

 

 

 

 

 
 

Figure 5: a) Input, filtered perturbation data, b) Target, perturbation data, c) Output, predicted data. Number of logs in 

validation, training and testing datasets is 1000, 9878 and 2724 logs, correspondingly. 
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