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INTRODUCTION 

  
The Pilbara in Western Australia is a major iron ore producing 
region, with the main deposits occurring within the Marra 
Mamba Formation and Brockman Formation of the Hamersley 

group (Thorne, 2008). The primary bedded mineralisation is 
martite-microplaty hematite and martite-goethite. In order to 
accurately estimate iron ore grades and reserves, the geology 
and geochemistry of the subsurface must be mapped accurately. 
In resource evaluation at Rio Tinto Iron Ore, block models are 
created through drilling and interpreting RC holes 
(Sommerville et al., 2014). RC chips from these holes are 
logged and assayed in 2 m intervals. Downhole geophysics 
comprising gamma, magnetic susceptibility and density 
readings are recorded every 10 cm. These datasets are used, 
along with known geology, to interpret the geological cross-
section within each RC drillhole. 
 
The Marra Mamba Formation is a banded iron formation (BIF) 
structure interleaved with shale bands (Trendall and Blockley, 
1970). It is overlain by the Wittenoom Formation which 
consists of dolomite, chert and shale. The Wittenoom 
Formation itself is overlain by the Mount Sylvia Formation, the 
Mount McRae Shale, and then the Brockman Iron Formation, 
which is another BIF structure interleaved with shale bands. 
The Brockman Iron Formation itself comprises the Dales Gorge 
Member, overlain by the Whaleback Shale, which itself is 
overlain by the Joffre Member (Trendall and Blockley, 1970). 
Hamersley Detrital deposits, located further up the stratigraphic 
sequence, are derived from weathered bedded ores (Morris, 
1994). Dolerite dykes are described by Dalstra (2006) as 
intruding faults in the formations in some areas. 
 
Each mineralised member is sub-divided into a number of units 
known as strands, which are the fundamental domains used for 
mineral resource estimation (Sommerville, 2014). The Joffre 
Member comprises six strands, labelled from the youngest, J6, 
to the oldest, J1. These strands alternate between shale-
dominated (odd numbered) and BIF-dominated (even 
numbered) strands. The Dales Gorge Member is similarly 
subdivided into three units (DG3, youngest, down to DG1, 
oldest), and the Mount Newman Member is divided into the 
NE1 and NE2 units, with NE2 further subdivided into upper 
(N2U) and lower (N2L) strands. These units are illustrated in 
Figure 1. 
 
Drillholes are interpreted by identifying strand units from the 
logged data including gamma logs, material type logging, 
assays, geological mapping and prior geological models, and 
the resulting interpretations are used to inform block modelling 
and hence resource estimation for the deposit (Sommerville et 
al., 2014). Interpretation thus is a critical step in the resource 

SUMMARY 
 
In minerals exploration, routine drilling is performed and 
the data logged from these drillholes, including 
lithological composition, assays, and downhole 
geophysical measurements such as natural gamma logs, 
are used to create geological interpretations of the strata 
within each drillhole. A 3D geological model can be 
created by identifying corresponding stratigraphic 
boundaries within multiple drillholes. These models can be 
used for understanding the formation and the mineral 
endowment of a deposit. 
 
We introduce a system for producing stratigraphic 
interpretations of iron ore exploration drillholes in the 
Pilbara region in Western Australia. The algorithm firstly 
classifies each data modality independently for each 
geological interval, for example 2m, with classification 
results for each stratigraphic unit as output. These 
classifiers, for geological logging, assays, gamma logs, 
were trained on historical datasets over a wide range of 
strata in the Pilbara. The influence of each classifier can be 
adjusted according to the user’s preference, and a novel 
optimisation algorithm incorporates known geological 
features such as dykes, faults and thicknesses of various 
stratigraphic units, to objectively create the best fit 
interpretation of the geology. A geologist can then adjust 
this interpretation to include local knowledge.  
 
Manual interpretations of 396 drillholes from a high-grade 
iron ore deposit are compared to interpretations of the 
same hole prepared by the algorithm. An interval-by-
interval comparison of these interpretations demonstrates 
that without any human input, similar interpretations are 
produced while reducing manual effort.  
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evaluation process. As the hundreds of kilometres of holes that 
are drilled annually need to be interpreted, the interpretation 
process is a significant processing bottleneck for block 
modelling. Additionally, during interpretation, users are 
presented with large quantities of data of various modalities per 
hole to process and integrate, and any inconsistencies or errors 
in interpretation directly affect the integrity of block modelling. 
We present a system combining novel machine learning and 
optimisation algorithms with user interaction to allow 
geologists to efficiently create strand interpretations from 
processing and integrating numerous modalities of drillhole 
data. The algorithms were trained on vast quantities of 
historically interpreted drillholes and operate rapidly and 
objectively. For each drillhole interval, the algorithms 
independently compute likelihood values for the interval’s 
strand for each data modality, before combining them using an 
interactive weighting procedure. An optimisation step then 
determines the best assignments of strands to intervals, while 
honouring stratigraphic sequence and thickness constraints. 
The weights of each input dataset can be adjusted and the 
resulting optimal interpretation recalculated and presented to 
the user in real-time. The interpretation can be manually 
adjusted before accepting it for use in downstream modelling. 
 

GAMMA PEAK IDENTIFICATION  
 
Shale bands within the bedded strata emit gamma rays which 
are routinely logged at 10cm spacing as part of the drilling 
process. One characteristic of the gamma readings is the 
consistency of responses from specific shale bands across the 
Pilbara, even when separated by hundreds of kilometres 
(Dentith, 1994). Thus, by identifying specific gamma 

responses, or signatures, within a log, strands within the 
sequence can be identified. Although these gamma signatures 
are transformed due to faulting, folding and drilling down-dip, 
and are destroyed by geological processes such hydration, the 
gamma signatures are highly useful for modelling purposes 
(Jones, 1973; Kerr, 1994). In Figure 1, the strand sequence is 
shown with an aligned reference gamma signal, illustrating the 
peaks in the gamma response corresponding to narrow shale 
bands. Some distinctive features include the DS9 shale 
signature, which has a high magnitude response relative to other 
shale bands, the triple peaks in the gamma log for the DS6 and 
DS11 shales, and the twin NS3 and NS4 responses within the 
Mount Newman Member.  
 
Several automated approaches have been proposed for 
identifying gamma signatures with specific application to shale 
bands in the Pilbara. Silversides et al. (2011) used Gaussian 
Processes to model and identify gamma signatures, and later 
used dynamic time warping (Silversides et al., 2015) to 
transform the log against a reference log. Nathan et al. (2017) 
modelled a gamma signature using a continuous profile model 
that jointly modelled uncertainty in the amplitude and 
alignment of a signature. In the proposed algorithm, an 
approach based on convolutional neural nets (ConvNets) is 
employed (LeCun, 2015).  
 

GEOLOGICAL LOGGING 
 

A second classifier is used to estimate strand likelihoods 
independently from the geological logging data. The logging 
summarises the composition for the interval in terms of material 
types, as recorded by a geologist on the drill rig from RC chip 

 
Figure 1.  Stratigraphic units, subdivisions, and gamma responses for the Hamersley Group. 
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samples brought to the surface in 2 m intervals. Importantly, 
some material types provide geological context, whereas some 
material types may be chemically similar, their presence may 
be used to determine the stratigraphy, such as detritals versus 
bedded strata. Additionally, the logged percentage of each type 
may be useful, for example, the shale type on average has lower 
percentages logged per interval in mineralised bedded strands, 
compared to shale strands.  
 
Thus, geological logging can be used as a basis for strand 
classification, and therefore interpretation. A second classifier 
has been developed, that classified strand likelihoods from 
geological logging, also using a neural net framework.  

 
ASSAYS 

 
Assay data is obtained from a second sample retrieved for each 
drilled 2m interval as previously described. This data is input 
into a third classifier to estimate strand likelihood values for 
each interval. In particular, one requirement was to use a soft 
classifier so that multiple strands can have high classifier 
outputs. For example, high grade mineralisation is not restricted 
to a single strand. Although theoretical assay values can be 
estimated from the material type logging, the same assay values 
can be represented by different material type combinations.  
 

HISTORICAL MODEL AND SURFACE 
GEOLOGY 

 
A fourth input utilises the existing geological mapping and 
model for the area. A surface geology map, recording 
observations from geological outcrops, can be used to constrain 
the interpretation to a specific strand for the first interval. The 
geological map may only record the outcropping unit to the 
member level rather than the strand level, for example, the area 
may be identified only as the Joffre Member rather than one of 
its component strands, in which case the first interval may be 
constrained to any strand within the Joffre Member, i.e. J1 
through to J6. 
 

LOGGED STRATIGRAPHY 
 

A fifth input used is the logged stratigraphy for the interval. As 
the hole is being drilled, the geologist observes the member 
drilled for each 2m interval. This is commonly estimated from 
changes in the colour and texture of the recovered RC chips and 
other geological observations. For this input, the logged 
stratigraphy is retrieved for each interval, and all strands of this 
member are assigned a value of 1.0. The logged stratigraphy 
may only identify a member rather than its component strand, 
in which case values are assigned to all component strands. 
 

INTERPRETATION 
 

Strand interpretation combines the outputs from the above 
classifiers by weighting and summing them to produce a single 
likelihood output that is used in the interpretation step. This is 
demonstrated in Figure 2. The weights are specified by the user 
interactively using the weighting polygon shown in Figure 2f. 
Each individual classifier is represented by one polygon vertex 
and weights are selected by positioning a cursor within the 
polygon. Initially, each component is equally weighted by 
placing the cursor at the centre of the polygon, and the result of 
equally weighting the classifiers shown in Figures 2a-e is 
shown in Figure 2g. Placing the cursor directly over one vertex 
sets the single classifier output equal to the individual classifier 

output corresponding to that vertex. Placing the cursor on the 
edge joining two polygon vertices linearly adjusts the weights 
of the corresponding component classifiers according to the 
distance from the vertices. Placing the cursor elsewhere within 
the polygon weights each individual classifier according to the 
distance from the cursor to each vertex. Additionally, individual 
classifiers can be toggled on or off, and the ordering of the 
vertices can be changed to allow different pairs of classifiers to 
be weighted preferentially. It is important that the weights are 
selected such that the historical geological model component 
does not dominate, as this would create a bias towards the 
existing model.  
 
The weighted classifier outputs are used as input for the 
sequence interpretation step, in which a strand is assigned to 
each interval according to stratigraphic constraints, including 
the strand sequence and strand thickness.  
 
Although the stratigraphic sequence shown in Figure 1 
illustrates the depositional order, geological processes such as 
faulting and folding cause local changes to the sequence. 
Further, a dolerite dyke exists that is not shown in the sequence. 
Therefore, when interpreting the sequence, strands cannot be 
assumed to appear in a fixed order. Faulting may result in 
sections of the sequence being repeated or missing, whereas 
overturning can cause the sequence to be inverted. During 
interpretation, if the dolerite dyke is observed, the interpretation 
records the same strand on either side of the dyke. 
 
Further to the sequence constraints, each strand has a thickness 
range estimated from geological measurements (Trendall and 
Blockley, 1970). However, drilling down dip can cause the 
apparent thickness of a strand to increase significantly.  
 
To handle these unique constraints, a novel dynamic 
programming algorithm was developed to optimise the 
allocation of intervals to strands that maximises the sum of the 
weighted classifier outputs for all intervals. The optimisation is 
subject to numerous constraints, including minimum and 
maximum strand thicknesses, stratigraphic sequence 
constraints including variations in the sequence due to faulting 
and folding; the presence of detritals overlying any bedded 
member, and further manual adjustments to constrain the 
interpretation to a specific strand at a specific depth. The 
resulting algorithm runs in real-time, allowing for interactive 
editing of extra manual constraints to adjust the interpretation. 
 

RESULTS 
 
We compared the manually-interpreted strand and the 
algorithm-interpreted strand for each interval and constructed a 
confusion matrix, shown in Figure 3. The brightness of each 
entry is proportional to the number of intervals corresponding 
to that manually-interpreted strand/algorithm-interpreted strand 
pair. In the ideal case where the algorithm-interpreted strand 
matches the manually-interpreted strand for every interval, all 
entries will lie on the diagonal. However, it is important to 
remember that the manual interpretations are interpretations 
rather than the ground truth. 
 
In our evaluation dataset of 11429 intervals from 394 drillholes, 
the algorithm’s interpretation was exactly the same as the 
manual interpretation for 7783 intervals (68.1%). Apart from 
DET (indicating surface detrital material) and DOR (dolerite 
dyke), strands are shown in order of increasing depth (and 
hence age). The main confusion was where the manual 
interpretation was YS and the algorithm’s interpretation 
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suggested the following J6 strand instead (307 intervals), which 
was roughly double the number of YS intervals correctly 
classified (177 intervals). The primary reason for this is likely 
due to the quantity of YS training data for the classifiers (far 
more training data is available for older/lower strands in the 
sequence). Another prominent confusion is WS1 mis-
interpreted as DG3 in 189 intervals. Considering this confusion 
of adjacent strands, and the common practice of a geologist 
adjusting a strand’s boundary up or down to provide more 
consistent interpretations with surrounding drillholes, a more 
appropriate measure is the percentage of intervals with an 
interpretation matching the preceding, same or following strand 
in the stratigraphic sequence. In terms of the confusion matrix, 
this is the sum of entries lying on or adjacent to the main 
diagonal (i.e. r = c, or r = c±1 for row r and column c) with the 
exception of the non-bedded strands DET and DOR. This gives 
a value of 9821 or 85.93% of intervals. 
 

 
Figure 3. Confusion matrix for manually-interpreted and 
automatically-interpreted intervals. 

 
CONCLUSIONS 

 
We have introduced a system for processing geoscientific data 
logged in exploration drillholes, by independently applying 
classifiers to each dataset, then applying a novel algorithm for 
producing geological interpretations of the data best satisfying 
stratigraphic sequence and thickness constraints. Comparisons 
of the algorithm’s interpretations with manual interpretations 
demonstrated large similarities at an interval-by-interval level, 
particularly when considering that strand contacts are 
commonly moved up and down for consistency with 
surrounding holes as is common practice in geological 
interpretation. These results demonstrate that the resulting 
drillhole interpretations are comparable with interpretations of 
the drillholes produced manually, while being faster and 
objective. 
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Figure 2.  Classifier outputs and weighting to produce a weighted classifier output.  Brighter values indicate a higher classifier 
response for that interval’s logging for that strand. 
 


