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inversion code available at the National Computational 
Infrastructure (NCI), with 400 GB of memory and 220 CPUs 
currently takes in the order of six days to run. To perform an 
inversion at continental scale, the MT community would need 
more memory, more CPUs and most importantly, further 
investigation into the optimisation of 3D inversion codes. A large 
part of the inversions is dependent on I/O performance and so 
effort in preparing for more 3D inversions will be hindered unless 
the MT data can be organised and tuned for better access in these 
HPC environments.  
 
Furthermore, in Australia, since 1960, although considerable 
amounts of MT data have been collected with public funding in 
both the government agencies and university sectors (Figure 1), 
only a small amount by volume is currently openly accessible and 
available to the wider community online, and the datasets barely 
comply with the modern Findable, Accessible, Interoperable and 
Reusable (FAIR) principles of Wilkinson et al. (2016). What is 
there is only findable in multiple site-specific catalogues and 
accessible as file downloads for local processing: the time series 
datasets are rarely available at all. Further, the data formats for 
storing processed data were developed in the 1980’s (Wight, 
1987) and there was limited interoperability both between 
various MT surveys and with other types of geophysical data. 
This relative lack in accessibility and consistency of formats 
limits reusability of MT data in modern HPC environments. 
 

 
Figure 1. Electromagnetic surveys conducted in Australia 
with public funding (government and university) from the 
1960s to present that can be obtained. Although EDI files are 
available for most of them, very few of the time series datasets 
are findable through online catalogues or generally 
accessible.  
 

THE CURRENT STATE 
 

MT surveys typically involve deploying long-period or 
broadband loggers at Earth’s surface which record naturally 
occurring time variations of electromagnetic fields as raw 
packaged data onto hard drives attached to the instrument. The 
acquired time series data generally include three components of 
the vector magnetic fields and two components of the horizontal 
electric field. The time series data are then time ordered, 
calibrated, cleaned through noise reduction techniques and 
resampled based on the desired MT application. Sophisticated 
time series processing methods are then deployed to estimate 
transfer functions (TFs) relating magnetic and electric field 
components: distortion and strike analysis reduce the TFs to a 
simpler set consistent with simplified one or two-dimensional 
models of Earth’s conductivity (Egbert, 2011). Finally, the TFs 

are used as input for inversion algorithms and the resulting 
conductivity models are used for interpretations of Earth’s 
subsurface structure. The different processing levels for MT 
datasets are outlined in Table 1. 
 
Most data providers only release processed MT EDI files and 
model outputs as file downloads, and enabled their distribution of 
time series datasets on physical media. A lack of agreed 
community standards has meant that many processed EDI 
datasets from past surveys had inadequate metadata and it was 
difficult to determine exactly what processing steps had been 
undertaken. MT practitioners became reliant on the processing 
conducted by another MT scientist, which may or may not have 
met their target depth or processing requirements. 
 
In general, the larger volume Level 1A calibrated time series 
(Table 1) datasets were not made routinely available and it was 
necessary to contact the author or the institution that collected the 
data to obtain it. The MT time series are unique and can be very 
expensive to acquire or re-acquire, especially at continental scale. 
Increasingly there is a demand for them to be more accessible 
than current practices allow, as they are required for replication, 
reanalysis and testing of new processing techniques. It is 
becoming essential to make calibrated MT time series datasets 
align with the FAIR principles to increase reusability of the data 
and allow for more targeted processing to specific user needs. 
Many different time series analysis and processing techniques 
exist (e.g. Chave and Thomson (1989, 2004), Larsen et al. (1996), 
Egbert and Eisel (1998), Eisel and Egbert (2001), Manoj and 
Nagarajan (2003)) and new techniques and codes will continue to 
be developed into the future as more computationally and data 
intensive capabilities become available.  
 

THE GEOSCIENCES DeVL PROJECT 
 

In 2017 the Australian Research Data Commons (ARDC) 
Initiative provided some seed funding for the Geosciences Data-
enhanced Virtual Laboratory (DeVL) Project that sought to make 
significant academic geophysics data collections accessible 
online using the FAIR principles. The project was a collaboration 
between AuScope, NCI, CSIRO, The University of Adelaide, 
ARDC, the Research School of Earth Sciences at ANU and 
Curtin University and comprised four work packages: MT, 
Passive Seismic, the International Geo Sample Number (IGSN), 
and the AuScope Virtual Research Environment (AVRE) 
platform and portals. 
 
The MT work package was a collaboration between The 
University of Adelaide and NCI, and sought to follow the 
exemplar of the EarthScope USArray MT project and take MT 
data ‘out of the drawer’ (Kelbert et al., 2018) and make both time 
series and processed data (EDI files, models) openly accessible 
in a sustainable and searchable manner. The Geosciences DeVL 
project involved transferring both time series (where available) 
and processed EDI files in their current state from the University 
of Adelaide and installing them along with a suite of MT 
processing codes onto the NCI HPC platform at the Australian 
National University as a proof of concept. Following the practice 
of the USArray MT project (Kelbert et al., 2018), each survey 
was assigned a globally unique digital object identifier (DOI) to 
enable attribution, to ensure it could become a citable scientific 
contribution, and ultimately to assist in usage tracking including 
facilitating discovering publications based on that dataset. The 
University of Adelaide data are now discoverable via the NCI 
catalogue (http://dx.doi.org/10.4225/41/5a618c3ae30ab), which 
includes a link to allow users to access the datasets either via 
NCI’s THREDDS data server 



The Geosciences DeVL Experiment                                              Rees et al. 

AEGC 2019: From Data to Discovery – Perth, Australia 3 

(http://dapds00.nci.org.au/thredds/catalog/my80/catalog.html) or 
directly from computers attached to NCI’s filesystem. 
Additionally, because the catalogue metadata records from NCI, 
Geoscience Australia, CSIRO are harvested into the Research 
Data Australia (RDA) (https://researchdata.ands.org.au/) portal it 
is now possible to locate MT datasets from these agencies from 
this single site. By allowing FAIR access to MT time series 
datasets and processing codes in NCI’s HPC environment, an MT 
scientist now has the ability to reprocess transfer functions to their 
desired standard and specific use case without having to rely on 
what another data provider had produced.  
 
In 2019 the Geosciences DeVL received additional funding from 
the ARDC to enable more MT time series datasets from the 
University of Adelaide to be added to the NCI data repository and 
further work to be undertaken to enhance their use in HPC 
processing environments. Many of the new metadata attributes 
defined by the Australian MT research community (Kirkby et al., 
2019) will be added directly to the time series data files.  
 
To make the University of Adelaide MT time series datasets even 
more suitable for use in HPC environments and more 
interoperable with data from other disciplines (e.g. gravity, 
magnetics, etc.), High Performance Data (HPD) formats such as 
HDF5 or netCDF will be utilised. These HPD formats are 
advantageous as they are self-describing, and their performance 
scales better on HPC when compared with traditional ASCII files. 
These formats have significant user communities in many Earth 
science disciplines and already have data services created around 
them (e.g. Domenico et al., 2002; Larraondo et al., 2017). The 
University of Adelaide and NCI are also working on optimising 
time series processing codes for HPC, with the aim of 
reprocessing older time series using HPC modified algorithms. In 
particular, the Renmark (2009) time series survey 
(http://dx.doi.org/10.25914/5bea5867bb322) is being 
reprocessed using an optimised version of the Bounded 
Influence, Remote Reference Processing (BIRRP) code (Chave 
and Thomson (1989, 2004)) with tuned compiling flags, parallel 
processing and I/O. This new optimised version allows the input 
of the entire time series (110 million data points per 
electromagnetic input), which means none of the data is discarded 
during processing, leading to additional data points and 
potentially better data fits. Prior to optimising, the processing 
time of the BIRRP code was initially taking five hours to run per 
site using one CPU core. These long run times were mainly due 
to the serial nature of BIRRP and its writing of intermediate files. 
In contrast, the initial results show the new optimised version has 
drastically reduced run times, with 3 minutes per site, using 
4GB/core memory and 32 CPU cores.  
 
By having the time series available, we have been able to 
reprocess the Renmark survey to reveal much more information 
at longer periods (Figure 2). The processing steps that were 
undertaken can be captured and documented in Jupyter 
notebooks, thus allowing other MT (and non-MT) practitioners 
to see exactly what processing was done, reproduce results and 
perform further analysis. 
 

NEW OPPORTUNITIES FOR MT IN HPC  
 

A number of new opportunities are emerging in the way MT 
processing and modelling is currently done. Many of the time series 
processing codes were written decades ago in an era before a need 
for parallelisation and HPC. With the size of the MT data and 
processing, these codes must now be modernised and adapted for 
HPC so that whole surveys could be processed or reprocessed in a 
matter of minutes. Inversion codes could be advanced to run more 

efficiently on supercomputers which could lead to drastically 
reduced run times. 
 
Time series datasets must also be revamped into HPD formats, 
allowing for much better scalability and performance and lowering 
the barrier for interoperability between different scientific 
disciplines. Processing pipelines and workflows could be 
developed and referenced in a communal environment, allowing 
for much more transparency in the way MT processing and 
modelling is conducted and ultimately leading to reproducible 
science. By reducing the computational barrier, HPC can lead to a 
step change in modelling sophistication, including better 
representation of uncertainty (Bryan, 2013).  
 
HPC can allow us to do more interesting modelling with our MT 
data. For example, there is growing interest in probabilistic 
modelling of MT data which can provide interesting ways of 
modelling time-lapse data (Rosas-Carbajal et al., 2015), 
exploration of the solution space (Rosas-Carbajal et al., 2013; 
Conway et al., 2018; Mandolesi et al., 2018), and the ability to more 
accurately model the errors in the MT response (Sielle and Visser, 
2018). However, such techniques are computationally burdensome 
and could greatly benefit from HPC. In addition, there is also some 
interest in applying machine learning techniques, particularly deep 
learning, to MT modelling (Conway et al., 2019), making the 
modelling process more efficient. This will require a large amount 
of high quality samples to create good training data that can then be 
used to provide accurate results. Using modern HPC deep learning 
libraries, the processing of these training samples is simple to 
parallelise and generate the inferencing model from these datasets. 
 
All these opportunities could lead to a transformative change in the 
way MT data analysis is routinely conducted and such a change has 
the capacity to create new ways of doing collaborative and 
transparent MT analysis. However, to make MT datasets more 
interoperable and reusable, particularly on HPC, requires greater 
international agreement on data formats and consensus on what 
metadata attributes are to be collected both at the time of acquisition 
and during processing. To be really useful, data must be 
accompanied with information about how they are captured, 
processed, analysed and validated and other information that 
enables interpretation and use (Hills et al., 2015). The Australian 
proposal for metadata attributes (Kirkby et al., 2019) needs to be 
socialised with the international community. The international MT 
community already acknowledges that there is a need for change to 
modern formats (e.g. Kelbert et al., 2018) and although they have 
yet to agree on a preferred format for either a time series archival 
storage format or on a replacement for the EDI format, discussions 
are currently underway:  
 https://groups.google.com/forum/#!forum/em-data-formats    
 https://gitext.gfz-potsdam.de/oritter/MT-Data-Exchange  

 
THE FUTURE OF MT 

 
The major developments over the last 20 years which have made 
continental scale surveys possible are: 

1. The improvement in instrumentation; 
2. The ability to store and process large volumes of data; 
3. The routine processing of large raw time series data to a 

common standard of dataset; and 
4. The ability to run higher resolution 3D inversions on HPC. 

 
There is now a better opportunity to prepare for future 
developments, such as more distributed arrays and deploying 
instruments by drones. Ideally, we would want to record more data 
in more places to provide better constrained models. In the next 
decade we will likely see significant improvements in the way data 
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is inverted with the goal of rapid 3D inversions: we would like to 
go from 3D inversions taking days to hours to minutes. We have 
seen this progression happen with 1D and 2D inversions, so there 
in no reason to think that 3D inversion will not undergo the 
comparable performance improvements.  
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Figure 2. Comparison of the XY (left) and YX (right) mode apparent resistivity and phase curves for an example site from the legacy 
Renmark processing (blue curve) and the additional information retrieved from the same reprocessed time series data (red curve) 
available at NCI. 
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Table 1. The different stages of MT data processing based on the National Aeronautics and Space Administration (NASA) and The 
National Research Council Committee on Data Management and Computation (CODMAC) Processing Levels for Science Datasets 
(Neumann, 2016). 

Processing levels Name Description Collected / Processed by Typical Volumes 

Packed Raw Data Raw Time Series Telemetry data streamed from site loggers. Single researcher or 
Research Team 

GBs to TBs 

Level 0 Edited Time Series Time ordered instrument recorded data (e.g. 
raw voltages, counts) at full resolution. 

Single researcher or 
Research Team 

GBs to TBs 

Level 1A Calibrated Time Series Level 0 data that have been calibrated in a 
reversible manner and packaged with 
associated calibration equations.  

Single researcher or 
Research Team 

GBs to TBs 

Level 1B Resampled Time Series Level 0 or 1A data that have been 
irreversibly transformed (e.g. resampled, 
noisy data removed, filters applied). 

Can be processed by 
anyone with access to 
L1A  

GBs to TBs 

Level 2 Derived frequency 
domain processed data 
(e.g. EDI) 

Geophysical parameters (e.g. impedance 
tensors) derived from frequency domain time 
series processing of Level 1A or 1B data. 

Can be processed by 
anyone with access to 
L1A or L1B  

MBs 

Level 3A Derived modelling 
inputs 

Level 2 parameters converted into input files 
for modelling and inversion algorithms. 

Can be processed by 
anyone with access to L2 

MBs 

Level 3B Derived modelling 
outputs 

Level 2 parameters mapped onto space-time 
grids. 

Can be processed by anyone 
with access to L2 or L3A 

MBs 

 


